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We consider finite volume methods for the numerical solution of conservation laws. In
order to achieve high-order accurate numerical approximation to non-linear smooth func-
tions, we introduce a new class of limiter functions for the spatial reconstruction of hyper-
bolic equations. We therefore employ and generalize the idea of double-logarithmic
reconstruction of Artebrant and Schroll [R. Artebrant, H.J. Schroll, Limiter-free third order
logarithmic reconstruction, SIAM J. Sci. Comput. 28 (2006) 359-381].

The result is a class of efficient third-order schemes with a compact three-point stencil.
The interface values between two neighboring cells are obtained by a single limiter func-
tion. The limiter belongs to a family of functions, which are based upon a non-polynomial
and non-linear reconstruction function. The new methods handle discontinuities as well as
local extrema within the standard semi-discrete TVD-MUSCL framework using only a local
three-point stencil and an explicit TVD Runge–Kutta time-marching scheme. The shape-
preserving properties of the reconstruction are significantly improved, resulting in sharp,
accurate and symmetric shock capturing. Smearing, clipping and squaring effects of classi-
cal second-order limiters are completely avoided.

Computational efficiency is enhanced due to large allowable Courant numbers
ðCFL K 1:6Þ, as indicated by the von Neumann stability analysis. Numerical experiments
for a variety of hyperbolic partial differential equations, such as Euler equations and ideal
magneto-hydrodynamic equations, confirm a significant improvement of shock resolution,
high accuracy for smooth functions and computational efficiency.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In the present paper we will derive a new third-order method for the computation of numerical fluxes within the frame-
work of finite volume (FV) schemes for conservation laws. FV methods, in general, are derived from the integral formulation
of conservation laws for a spatial domain X and a quantity u
d
dt

Z
X

uðx; tÞdx ¼ �
Z
@X

f ðuðx; tÞÞ � ndS: ð1:1Þ
The volume of u can only change in time by the dynamics of the flux f ðuðx; tÞÞ across the boundary @X.
Solutions to these equations have typically smooth structures interspersed with discontinuities. An accurate prediction of

such interactions is of importance in many computational fluid dynamic (CFD) applications, such as aircraft design, stellar
formation, and weather simulations, to name only a few. The main task is to develop algorithms that ensure the conservation
property Eq. (1.1), that are highly accurate for smooth regions in both time and space, and that have sharp transition where
large gradients or discontinuities appear.
. All rights reserved.
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Numerical methods for conservation laws can in general be divided into two approaches: a one-step approach, where
time and space discretization is coupled via the Cauchy–Kowalewski procedure (see e.g. [15,27]) and semi-discrete schemes,
where time and space integration are separated. The latter has been a very successful approach towards the dual objective,
i.e., high accuracy and non-oscillatory transitions. It uses strong stability preserving Runge–Kutta time-marching schemes,
combined with polynomial reconstruction of the interface value uðx; tÞj@X of the flux f ðuðx; tÞj@XÞ from a given cell average.

One of the first high-order semi-discrete algorithm was van Leer’s TVD-MUSCL (Monotonic Upstream-centered Scheme
for Conservation Laws) scheme [19]. A piecewise-linear spatial approximation was combined with a second-order time inte-
gration. To avoid spurious oscillations total variation diminishing (TVD) limiters were used. TVD limiters are bounded non-
linear functions obeying Harten’s TVD conditions [8]. These limiters ensure that any reconstructed values at any time do not
lie outside the range of the initial data, thus precluding accurate resolution of local extrema. To avoid this drawback, Harten
et al. [9] later introduced the concept of essentially non-oscillatory (ENO) schemes. ENO methods use instead of a non-linear
limiter an optimal stencil search procedure, which chooses the locally ‘‘smoothest” reconstruction, thereby avoiding inter-
polation across discontinuities. Due to the adaptive stencil, the finally approximated interface value does not consist of all
available data. In the weighted ENO (WENO) scheme by Liu et al. [17] the interface values are computed as convex combi-
nations of all candidate stencils, hence making better use of the available data. In contrast to TVD schemes both ENO and
WENO methods introduce spurious yet bounded variation, which eventually decreases as the mesh is refined.

At the same time the idea of limiting has been further developed as extensions of the TVD-MUSCL scheme. A third-order
method was developed by Woodward and Colella [36]. They used a four-point centered stencil to recover the interface val-
ues, which afterwards were limited in the vicinity of a discontinuity. An even higher-order extension was introduced by Sur-
esh and Huynh [26] employing a five-point stencil reconstruction with a limiting procedure, which preserves monotonicity
and accuracy for smooth extrema, easing the TVD constrain. To apply the costly limiting routine efficiently, they preprocess
the data to localize discontinuities. Waterson and Deconinck [34] have recently presented a unified classification of limiters
based on three-points. A successful limiter in this family is the Koren limiter [13] (see also [2]). All analyzed limiter functions
were derived from polynomial reconstruction functions and degenerated to first-order for smooth extrema.

In contrast to the method based upon a polynomial approximation of the interface values, Artebrant and Schroll [5] have
recently developed a new non-polynomial reconstruction function. Originally motivated by the work of Marquina [18], who
used a hyperbola as reconstruction function, they recover the interface values with a local double logarithmic (LDLR) Ansatz
function. Due to the logarithmic nature it is able to handle discontinuities without spurious oscillations, yet introducing local
bounded variation. In contrast to Marquina’s hyperbolic reconstruction LDLR can recover local extrema without loss of accu-
racy. It is local, in the sense that it uses only a three-point stencil and it does not use classical limiters to avoid oscillations.
Numerical experiments in [5] indicate its superior performance compared to other third-order methods and reconstruction
techniques.

Inspired by the results of Artebrant and Schroll [5] we have followed a different path. The local and symmetric nature of
LDLR allowed a simpler, yet more efficient formulation of Artebrant and Schroll’s scheme, thus resembling very much van
Leer’s three-point TVD-MUSCL algorithm using only a single limiter function. Furthermore this interpretation not only sim-
plified the original reconstruction, but also improved its shock capturing qualities and reconstruction efficiency without the
application of a logarithmic function at all. This eventually led to a whole family of limiter functions, which recover smooth
extrema with third-order accuracy. We want to emphasize that the paradigm of this paper is to rigorously restrict the lim-
iting procedure to a three-point stencil. Consequently we have to cope with the problem of recovering discretized smooth
structures with few data points. Yet, we remain in the well-understood context of the efficient classical TVD-MUSCL scheme.
Taking into account that the proposed limiters are simple ðmax�;min�Þ functions, which do not expand the computational
stencil, they become attractive candidates to be easily incorporated into already existing TVD codes.

To emphasize the close relation of the proposed third-order limiting method with van Leer’s TVD-MUSCL scheme, we first
revisit the second-order one in Section 2. In Section 3, the main properties of the new limiter functions – the key features of
our scheme – its connection and the differences to LDLR and other schemes will be explained. Furthermore the difficulty of
recovering local extrema with a three-point stencil without loss of accuracy will be discussed and solved. In order to reach a
overall third-order accuracy we use the explicit three-stage TVD Runge–Kutta time integration of Gottlieb and Shu [7]. In
Section 4 we investigate the characteristic properties of the new methods in the frequency domain, in terms of a linear
von Neumann stability analysis. Convergence studies and various numerical experiments, including one- and two-dimen-
sional systems appear in Section 5. Finally conclusions are presented in Section 6.

2. Spatial reconstruction: standard TVD-MUSCL methods

For simplicity and in order to settle our notation we consider the numerical approximations to the one-dimensional scalar
initial value problem
ut ¼ �f ðuÞx;
uðx; t ¼ 0Þ ¼ u0ðxÞ;

ð2:1Þ
where u0 is either a piecewise smooth function with compact support or a periodic function. Note that the flux in Eqs. (1.1)
and (2.1) appears on the right-hand side to emphasize the semi-discrete formulation. We cover the uniform computational
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region with control cells Cn
i ¼ ½xi�Dx=2; xiþDx=2� � ½tn; tnþ1�, with tnþ1 ¼ tn þ Dt and the computational grid xi�1 ¼ xi � Dx. Inte-

grating the conservation law Eq. (2.1) over the control volume Ci, we obtain the standard finite volume (FV) update
d
dt

�ui ¼ Lið�unÞ ¼ 1
Dx
Fðûð�Þ

i�1
2
; ûðþÞ

i�1
2
Þ � F ûð�Þ

iþ1
2
; ûðþÞ

iþ1
2

� �h i
ð2:2Þ
for the cell average �un
i at time tn
�un
i ¼

1
Dx

Z xiþDx=2

xi�Dx=2

unðxÞdx ð2:3Þ
based on the numerical flux function F , which is supposed to be Lipschitz continuous and consistent with the flux f ðuÞ:
Fðu; . . . ; uÞ ¼ f ðuÞ: ð2:4Þ
The evolution of �un
i is governed by the left and right limits ûð�Þ

iþ1
2

– the interface values – of the reconstructed function ûðxÞ. The

cell interface value ûiþ1
2
¼ ûð�un

i ; �u
n
iþ1Þ denotes the intermediate value at xiþ1=2 of the Riemann problem solution with initial

data �un
i ; �u

n
iþ1. The calculation of the interface values from the known cell mean values is the essential reconstruction task

and determines the scheme’s order of accuracy. This is the main concern of this paper.
To obtain higher-order accuracy, we have to improve the reconstruction of the left and right limits ûð�Þ

iþ1
2

and we also have
to adjust the time integration by a higher-order time-stepping method. Since we consider a local reconstruction, i.e. a three-
point stencil, we define the interface values as
ûð�Þ
iþ1

2
� Lð�ui�1; �ui; �uiþ1Þ;

ûðþÞ
iþ1

2
� Rð�ui; �uiþ1; �uiþ2Þ;

ð2:5Þ
where capital L and capital R denote the left and right cell interface approximations, respectively. In order to obtain high-
order non-oscillatory reconstructions, the interpolation function Eq. (2.5) is a priori non-linear.

The classical second-order TVD-MUSCL scheme assumes a piecewise-linear interpolation from the average values �uiðtÞ.
ûð�Þ
iþ1

2
¼ �ui þ

Dx
2

ri;

ûðþÞ
i�1

2
¼ �ui �

Dx
2

ri;

ð2:6Þ
where the slope r can either be expressed via upwind, downwind or centered finite differences to recover the Beam-Warm-
ing, Lax–Wendroff or Fromm method, respectively (see e.g. [15]).

In order to avoid Gibbs’ phenomenon and to control the resulting oscillation, TVD limiters have to be applied directly on
the slopes. Hence the reconstructed interface values are expressed in terms of non-linear limiter functions using, e.g. the
downwind slope
ri ¼
diþ1

2

Dx

 !
/ðhiÞ; ð2:7Þ
where diþ1
2
¼ �uiþ1 � �ui is the difference across a cell interface, and
hi ¼
di�1

2

diþ1
2

; diþ1
2

– 0 ð2:8Þ
is a local smoothness measure.
If the limiter function satisfies /ð1þ DxÞ ¼ 1þ Dx

2 þOðDx2Þ for �u 2 C1 and is Lipschitz continuous at h ¼ 1 we recover sec-
ond-order accuracy in space. Classical TVD-limiter functions, such as minmod, super-bee and monotonized central difference
limiter (MCD) (see e.g. [27,15]) lie in the TVD region (/ðhÞ � h plane):
0 6 /ðhÞ 6 2h;

0 6 /ðhÞ 6 2:

�
ð2:9Þ
This region is a direct consequence of Harten’s TVD theorem. For h 6 0 the reconstruction reduces to the constant cell aver-
age itself and smooth extrema for which h 6 0 holds cannot be recovered accurately. Thus classical second-order TVD
schemes are only of second-order away from local extrema and discontinuities. Yet limiter functions that remain inside
Harten’s TVD region, do not produce any variation in the vicinity of a discontinuity. This property plus their simplicity
and efficiency makes them a popular choice for the CFD community. In general limiters can be considered as logical switches.
They continuously change from constant to linear reconstruction. The switching argument is the local smoothness measure
equation (2.8), which in its simplest form is only the ratio of the left and right slopes. Unfortunately classical second-order
TVD limiters suffer from several well-known drawbacks, such as smearing, clipping and squaring effects of the numerical
approximation.
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3. Third-order limiting

In this section we will derive new limiter functions, which are essentially of third-order accuracy and remain in the stan-
dard TVD framework. In contrast to classical limiter functions, the proposed limiters are based upon a non-linear and non-
polynomial reconstruction technique. In addition we will explain the close affinity of quadratic interpolation and limiter-free
local double-logarithmic reconstruction (LDLR) as proposed by Artebrant and Schroll [5].

3.1. Compact third-order reconstruction

The TVD-MUSCL scheme adopts a local three-point stencil to get only a linear interpolation for the spatial approximation
of a function gðxÞ. However three-data points are sufficient for constructing a unique quadratic interpolation function
piðxÞ ¼ ai þ biðx� xiÞ þ
ci

2
ðx� xiÞ2
resulting in a local third-order reconstruction (see e.g [9] for ENO scheme or [31] for MUSCL schemes) of the interface values
ûð�Þ
iþ1

2
¼ 5

6
�ui �

1
6

�ui�1 þ
1
3

�uiþ1;

ûðþÞ
i�1

2
¼ 5

6
�ui �

1
6

�uiþ1 þ
1
3

�ui�1:

ð3:1Þ
To derive the parameters ai; bi and ci, the quadratic function piðxÞ, integrated over the cell Ci ¼ ½xi�Dx=2; xiþDx=2� has to recover
the cell average �ui itself and its left and right derivatives located at cell interfaces have to be approximated to second order.
Similar third-order reconstruction has also been proposed by Agarwal [1] and others. Yet he applied a four-point stencil in a
finite-difference upwind scheme to recover ûð�Þ

i�1
2
.

The oscillatory behavior of the reconstruction depends on the function gðxÞ, which has to be reconstructed. Assume that
gðxÞ is a smooth function on a spatial domain including the finite control volume Cn

i ¼ ½xi�Dx=2; xiþDx=2� � ½tn; tnþ1� for all times.
Suppose that the lateral derivatives are bounded functions of OðDxÞ. The total variation inside the control cell for both linear
and quadratic reconstruction is then
TVðpiðxÞÞ ¼
Z xiþ1=2

xi�1=2

jp0iðxÞjdx ¼ OðDxÞ: ð3:2Þ
If the function gðxÞ is discontinuous inside the control volume Cn
i for any time, one of the lateral derivatives is an unbounded

function of Oð1=DxÞ and the total variation reads
TVðpiðxÞÞ ¼ Oð1Þ: ð3:3Þ
Thus to avoid oscillation in the presence of discontinuities we have to either find a different, yet less oscillatory approxima-
tion function riðxÞ, or apply limiters, which diminish the total variation in the vicinity of discontinuities. Since we prefer the
second approach, we seek to reformulate Eq. (3.1) in a similar way to Eq. (2.6) using suitable limiters, whose accuracy does
not degenerate at local extrema.

3.2. Logarithmic limiter

Motivated by the work of Marquina [18] on local non-polynomial reconstruction functions, Artebrant and Schroll [5] have
recently developed a local double-logarithmic reconstruction (LDLR) using the Ansatz function
liðxÞ 	 Ai þ Bi lnðx� xi þ CiÞ þ Di lnðx� xi þ EiÞ ð3:4Þ
to approximate the interface values. Identically to the construction of a unique parabola equation (3.1) one can construct a
local function liðxÞ with uniquely defined values Ai; Bi;Ci and Di.

The LDLR is, in contrast to Marquina’s hyperbolic reconstruction, essentially of third-order away from discontinuities
without the explicit use of limiters. Due to the logarithmic nature its total variation scales, in the presence of jump discon-
tinuities, with OðDxqj lnðDxÞjÞ [5]. Hence LDLR recovers the cell mean value itself as the mesh is refined. The exponent q will
be discussed later. Still a local smoothness measure as argument of the logarithm has to be built in.

Since LDLR is local and uses only three data points, it turns out that the whole reconstruction procedure can be signifi-
cantly simplified and written in a convenient limiter formulation. The complete derivation is shown in Appendix A.

After some algebraic reformulation we find
ûð�Þ
iþ1

2
¼ �ui þ

1
2

/ðhiÞdiþ1
2
;

ûðþÞ
i�1

2
¼ �ui �

1
2

/ðh�1
i Þdi�1

2
:

ð3:5Þ
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This formulation uses only a single limiter function
Fig. 1.
discont
/ðhiÞ ¼
2pððp2 � 2phi þ 1Þ ln p� ð1� hiÞðp2 � 1ÞÞ

ðp2 � 1Þðp� 1Þ2
ð3:6Þ
with
p ¼ pðhi; qÞ ¼ 2
jhijq

1þ jhij2q : ð3:7Þ
In contrast to the TVD-MUSCL scheme, we have to use the limiter also with inverse input and hence also with reverse slopes
di�1

2
(compare ûðþÞ

i�1
2

in Eqs. (3.5) and (2.5). This optimizes the use of the local stencil in the TVD-MUSCL framework, resulting in
a third-order accuracy away from discontinuities. The exponent q in Eq. (3.7) controls the amount of the total variation of the
reconstruction. It also appears as an exponent in the convergence estimate of the total variation of LDLR at jump
discontinuities.

The limiter function Eq. (3.6) has three removable, yet important singularities at pð�1Þ ¼ 1 and p ¼ 0. The first two can be
removed by setting /ð1Þ ¼ 1 and /ð�1Þ ¼ 1

3. This ensures that accuracy is not degenerated at local extrema for which h ¼ �1
holds. Note that the log-limiter Eq. (3.6) itself is not capable of accurately recovering smooth extrema, due to its singularities.
This is also the case in the original LDLR algorithm, where Artebrant and Schroll [5] recommended to interpolate around the
singularities using three data points, thus a parabola. This interpolation would also lead to /ð0Þ ¼ 0 at p ¼ 0.

The shape of the log-limiter function /ðhÞ is shown in Fig. 1 for different values of q. For
q! 0; pðhÞ ! 1 8h 2 R n f0g
we recover
/ðhÞ ¼ 2þ h
3

: ð3:8Þ
Inserting Eq. (3.8) into the interface values Eq. (3.5) results in the quadratic reconstruction Eq. (3.1).
The total variation-control parameter q can, in the TVD-MUSCL framework, also be interpreted as a control value of com-

pressivness, similar to the minmod and super-bee limiter. Indeed, the smaller the parameter q, the more local variation is
introduced in LDLR, resulting in spurious oscillations. In other words the function /ðhÞ moves out of the TVD region (see
Fig. 2, right). The larger the q the less the variation is produced and discontinuities are smeared out within more cells. This
is similar to the transition between the diffusive minmod limiter and the over-compressive super-bee limiter inside Harten’s
TVD bound. Though for both limiters, minmod and super-bee, variation diminishes in the presence of discontinuity. The non-
linear limiter function smoothly extends into the range of h < 0 and vanishes for h! �1 and h! 0, which is essential for
limiting discontinuities.

Note that the derivation of the new limiter function Eqs. (3.6) and (3.7) and the limiter itself are essentially different from
known limiters and their derivation (see Waterson and Deconinck [34] for a review). Here we have taken a new and success-
ful approach, which features a non-linear and non-polynomial Ansatz function for the reconstruction, and have reduced it to
a limiter function. The new limiter is simpler and more efficient than the original LDLR reconstruction and seems to go be-
yond the limiter categories described in [34].
q = 1.0

q = 1.4

q = 2.0

Shape of the limiter function /ðhÞ Eq. (3.6) for different values of q. For larger q less total variation appears, yet diffusion increases leading to smeared
inuities. Right: Zoom of the inner region.



Extended monotonicity
region

new limiter

Log.-limiter with
q = 1.4

Fig. 2. Left: New limiter /̂ Eq. (3.13) matching for logarithmic limiter with q ¼ 1:4. Right: Zoom of the inner region. Extended monotonicity region
according to [10].
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3.3. Simplified third-order limiter

The logarithmic limiter /̂ðhÞ is derived from a double logarithmic Ansatz function, which is conservative, third-order
accurate and essentially local variation bounded. The essential characteristics are:

(1) /ð1þ DxÞ ¼ 1þ Dx
3 þOðDxmÞ and /ð�1þ DxÞ ¼ 1

3þ Dx
3 þOðDxnÞ with n;m P 2.

(2) limh!0/ðhÞ ! 0 and limh!�1/ðhÞ ! 0.

The first condition guaranties a third-order accurate resolution of local extrema, for which h ¼ �1þ Dx holds. The second
ensures Eq. (3.6) to be local variation bounded in the presence of discontinuities.

Both, the LDLR and the logarithmic limiter function are eventually complicated and computationally expensive, although
Eq. (3.6) has already only one logarithmic evaluation. Furthermore the LDLR is very sensitive to the parameter q and Arte-
brant and Schroll [5] suggested to set q ¼ 1:4 to ensure stability (see discussion above). Keeping the main features (1) and (2)
in mind, we can construct a piecewise-linear limiter function with similar properties, yet even improving its shock capturing
abilities.

Omitting logarithmic functions, we not only avoid troublesome singularities but also get better control on the reconstruc-
tion routine, thus on the total variation. The new limiter reads:
/̂ðhÞ ¼ max 0;min
2þ h

3
;max �ah;min bh;

2þ h
3

; c
� �� �� �� �

; ð3:9Þ
where the parameters a; b and c satisfy the conditions:
0 6 a 6 2;
1 6 b 6 2;
1 6 c 6 2:

8><>: ð3:10Þ
These parameters control the shock capturing properties and total variation of the limiter /̂ðhÞ, similar to the exponent q in
Eq. (3.7). They span a monotonicity region for the slope /̂ðhiÞdiþ1=2, i.e a region where the resulting interpolated function
(reconstructed cell interface value) is monotone if the data are monotone. The region in Fig. 2 is included in the extended
monotonicity regions proposed by Huynh [10] and Hyman [11]. Other authors, such as Spekreijse [25] and Dubois [6]
(and references there in) have derived further constraints on the monotonicity region, bounding the parameter a by
0 6 a 6 2� c. This restriction reduces the region of full third-order recovery, but also restricts the maximum bound of total
variation. This eventually leads to smeared discontinuities. We have to clearly emphasize that the monotonicity bounds de-
rived by Spekreijse [25] are based upon symmetry assumptions for second-order reconstructions. Since we consider third-
order reconstruction we impose different symmetry requirements Eq. (3.12) for the limiter function /̂ðhÞ. This leads to more
relaxed monotonicity bounds for the limiter function: /̂ðhÞ 2 ½�3 minð1; jhjÞ;3 minð1; jhjÞ� (see [10,11]). However monotonic-
ity restrictions require that the slope /̂ðhiÞdiþ1=2 ¼ 0 if the data are not locally monotone, i.e., in the presence of local extrema
and discontinuities. Therefore TVB methods, such as LDLR or ENO/WENO schemes relax the monotonicity conditions, in or-
der to resolve smooth extrema to full accuracy.

The building block of the new limiter is the function /ðhÞ ¼ 2þh
3 from Eq. (3.8), which results in the quadratic reconstruc-

tion Eq. (3.1). The variables a and b bound the variation of /̂ðhÞ for h 2 ð�1; 0� and h 2 ½0;1�, respectively. The parameter c
represents the upper bound for the third-order reconstruction for h 2 ½1;þ1Þ. We bound the variables b and c according to
the TVD region Eq. (2.9), to satisfy Harten’s TVD theorem. So if we set a ¼ 0 we recover a TVD limiter
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/TVDðhÞ ¼max 0;min 2h;
2þ h

3
;2

� �� �
; ð3:11Þ
which essentially reconstructs smooth functions, for which h 2 2
5 ;4
	 


, to third-order accuracy. Still degenerating to first order
for smooth extrema in h 6 0. This function obviously is very economic and simple. Its evaluation only consists of two
ðmax;minÞ statements identical to the minmod limiter, yet it employs a quadratic polynomial reconstruction as building
block. This limiter is essentially identical to the j ¼ 1

3 Koren limiter [13]. It was originally derived from the j-scheme of
Anderson, Thomas and van Leer [2]. Koren used in his formulation the inverse r ¼ diþ1=2

di�1=2
of the slope ratio h as smoothness

measure. Therefore the cell interface values ûð�Þ
i�1

2
Eq. (3.5) have to be reformulated under the consideration of

/TVDðhÞdiþ1=2 ¼ wKorenðrÞdi�1=2. In the following we will refer to the limiter /TVDðhÞ Eq. (3.11) as Koren limiter to emphasize
its original derivation. A similar limiter function has also been proposed by Arora and Roe [3] in the context of one-step
FV methods. Although they employed a quadratic reconstruction for h 
 1, the one-step algorithm is only second-order accu-
rate for non-linear equations. Similar to classical second-order TVD limiters the Koren limiter (or /TVDðhÞ) and the Arora lim-
iter [3] suffer from the clipping of extrema for h 6 0 and do not recover the full order of accuracy.

To be able to capture smooth extrema for h 
 �1 without loss of accuracy, we have to ease the monotonicity requirement,
i.e., Harten’s TVD theorem. Setting a P 1

3 expands the limiter function continuously for h 
 �1 and allows to recover smooth
extrema for h 2 �2;� 2

3aþ1

h i
to a third-order accuracy.

A further attribute of the proposed limiter is that it does not satisfy the symmetry requirement of classical second-order
TVD limiters
/ðh�1Þ ¼ /ðhÞh�1 8h 2 R n f0g:
Suppose the data �un are symmetric in x, we want to impose symmetry on the reconstruction, i.e., ûðþÞ
iþ1

2
¼ ûð�Þ

iþ3
2
. This requires

that the limiter function /̂ðhÞ satisfies
1 6 /̂ðhÞ 6 h/̂ðh�1Þ 6 h; h 2 ½1;1Þ;
h 6 h/̂ðh�1Þ 6 /̂ðhÞ 6 1; h 2 ð�1;1� n f0g;

(
ð3:12Þ
which is due to the inverse evaluation of h in Eq. (3.5).
In Fig. 2 we match the new limiter /̂ðhÞwith the original logarithmic limiter function /ðh; q ¼ 1:4Þ, Eqs. (3.6) and (3.7). The

new limiter reads
/̂ðhÞ ¼max 0;min
2þ h

3
;max �0:5h;min 2h;

2þ h
3

;1:6
� �� �� �� �

: ð3:13Þ
It shares the common characteristics of the logarithmic limiter within the simple framework of classical second-order TVD
limiters. It is a piecewise-linear ðmax;minÞ function which acts as a logical switch depending on the smoothness measure h.
Its rigorous cutoffs for h! �0 (Fig. 2, right) ensure sharp resolution of discontinuous functions, yet remaining in Harten’s
TVD region for h P 0. Note that with a > 2� c we have violated Dubois [6] monotonicity conditions.

3.4. Geometrical interpretation of the TVD conditions

In the previous section we have derived a new limiter /̂ðhÞ, which reconstructs smooth extrema, for which h 
 �1 holds,
with a quadratic polynomial. Unfortunately in this form, the accuracy of the reconstruction still degenerates to first-order in
cells with one vanishing lateral derivative. In the following we will discuss the problem of resolving smooth extrema for
which h 
 �0 holds with the aid of limiters.

Let us now consider a non-monotone sinusoidal initial function localized at different time levels on an equidistant grid.
Fig. 3 illustrates the smooth profile as well as the discrete set of cell mean values f�ui�1; �ui; �uiþ1g, i.e., its discrete representa-
tion. The reconstruction of the interface values, based upon the three cells is shown at three different times. It is obvious that
for the times t2 and t3, the slope ratio becomes h 6 0. Thus limiters satisfying Harten’s TVD constrains recover only the cell
mean value itself and consequently clip-off local extrema. For t1, where the data �ui are monotone in the interval
½xi�1; xi; xiþ1�; h 
 1 holds and full reconstruction is assured. Using the limiter /TVDðhÞ improves the accuracy of the reconstruc-
tion only where the data �ui are monotone using a quadratic instead of a linear polynomial.

Since our reconstruction entirely depends on the lateral derivatives, we expand di�1=2 around xi�1=2:
di�1=2 ¼ u0ðxi�1=2ÞDxþ 1
12

u000ðxi�1=2ÞDx3 þOðDx4Þ;

diþ1=2 ¼ u0ðxi�1=2ÞDxþ u00ðxi�1=2ÞDx2 þ 7
12

u000ðxi�1=2ÞDx3 þOðDx4Þ:
ð3:14Þ
It is obvious that the lateral differences are given by
di�1=2 ¼ diþ1=2 þ c0OðDx2Þ with c0 ¼ u00ðxi�1=2Þ ð3:15Þ
for monotone data. For smooth data the lateral differences are bounded functions di�1=2 ¼ OðDxÞ, thus the local smoothness
measure Eq. (2.8) yields
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h ¼ 1� c1OðDxÞ with c1 ¼
u00ðxi�1=2Þ
u0ðxi�1=2Þ

: ð3:16Þ
Due to condition (1) in Section 3.3 we then reconstruct the interface values to full third-order accuracy, i.e., limDx!0h ¼ �1.
For di�1=2 
 0 and diþ1=2 ¼ c (or vice versa), one of the approximations of the lateral derivatives is an unbounded function with
a singularity in the gradient at Dx! 0. Then the data are discontinuous and we have to limit the reconstruction completely,
i.e., either limDx!0h ¼ �1 or limDx!0h ¼ �0.

In order to achieve full third-order accuracy for monotone data, the constant c1 ¼
u00 ðxi�1=2Þ
u0 ðxi�1=2Þ

must be a bounded function. Yet
it is also obvious that on a coarse grid this constant might change the convergence order dependent on the curvature of the
data. The constant c1 represents a measure of curvature for a monotone function between two neighboring cells. For a rather
large jc1j, i.e., ju0j small and/or ju00j large, the discretized input data, especially on a coarse grid, might represent a disconti-
nuity rather than a smooth function. Consequently such data will be fully limited. Note that in the vicinity of steep, narrow
extrema jc1j will also be very large yet still bounded ðju0j– 0Þ and a fine resolution is needed to accurately reconstruct the
function with only three data points.

The characteristic of a limiter to reconstruct linear functions with a large constant jc1j is often referred to as compressiv-
ness. It is controlled by the limits of Harten’s TVD conditions Eq. (2.9), especially by the lower bound /ðhÞ 6 bh with
1 6 b 6 2 (see Eq. (3.10)). Choosing a smaller limit /ðhÞ ¼ h yields a more diffusive limiter, such as the minmod function.
Increasing the bound to /ðhÞ 6 2:5h, the limiter is outside Harten’s TVD region, but it reconstructs steeper transitions, i.e.,
linear function with a ‘‘larger” constant jc1j, to full third-order accuracy. This is the case for the logarithmic limiter Eq.
(3.6) of the LDLR reconstruction as can be seen clearly in Fig. 2 (right picture). But it also leads to spurious over-and un-
der-shoots, since the limiter is outside Harten’s TVD bounds. This is the reason why we choose the lower limit to be inside
the TVD region. If the constant jc1j is small, for shallow gradients, we have h ¼ 1þOðDxÞ and we yield third-order recovery.

To be able to recover smooth extrema with different signs of the lateral derivatives, i.e., h ¼ �1, the monotonicity condi-
tion has to be softened. The extended monotonicity region, Fig. 2, is indicating a domain where the resulting interpolated
function, i.e., the reconstructed values are monotone, even though the data are not necessarily monotone (Fig. 3 for t3).
Although we have already extended here the limiter /̂ðhÞ for h < 0, we can only fully reconstruct local extrema that are al-
most perfectly symmetric at the cell center xi and therefore its slopes di�1=2 are of same absolute value but are of different
signs ðh 
 �1Þ. As shown in Fig. 3 this is a very artificial case, since local extrema although initially located at a cell center,
will eventually be relocated during their evolution inside the cell.

It is crucial to understand, that although the LDLR algorithm is of third-order accuracy, the derived logarithmic limiter Eq.
(3.6) and also its simplification Eq. (3.9) suffers from accuracy loss at local extrema for which h! 0 or h! �1. Hence
smooth extrema with one vanishing lateral derivative are always limited instead of being fully reconstructed. Fig. 3, for t2.

In order to overcome this drawback we have to extend the new limiter formulation. We cannot just simply extend the
monotonicity region in Fig. 2, so long /̂ð0Þ ¼ 0 holds. We have to formulate a criterion that prohibits the limiter /̂ðhÞ to pass
through zero in the presence of a local extremum with one vanishing lateral derivative. For this we have introduced an
asymptotic region based on the indicator function
gðdi�1=2; diþ1=2Þ ¼
d2

i�1=2 þ d2
iþ1=2

ðrDxÞ2
; ð3:17Þ
which is a function of the lateral differences di�1=2, instead of h. In addition it depends on the grid size Dx and on a dimen-
sionless constant r > 0. We will refer to the constant r as radius of the asymptotic region.

For g 6 1 the lateral derivatives di�1=2 are too small for h being a good measure for discontinuities. For g > 1; di�1=2 are
large enough so that the limiter /̂ðhÞ can be applied. In Fig. 4 one can see that the asymptotic region spans a circle around
u i

t2

x
i

t3

t1

i + 1i − 1 i

Sketch of a smooth initial profile and its discrete representation at different times, i.e., different locations on a uniform grid. For simplicity we have
point values instead of cell mean values.
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h 
 �0 with the radius r. Thus data inside this domain are reconstructed to full third-order accuracy, whereas data outside
the asymptotic region are passed to the limiter /̂ðhÞ Eq. (3.9).

Assuming a local extremum u0ðxi�1=2Þ ¼ 0;u00ðxi�1=2Þ – 0 and canceling higher-order terms in Eq. (3.14), Eq. (3.17) yields
gðdi�1=2; diþ1=2Þ ¼
u00ðxi�1=2Þ

r

� �2

Dx2 þOðDx3Þ: ð3:18Þ
The function g is a measure of the second derivative, i.e., of the curvature of non-monotone data inside a cell. Note that
g ¼ OðDx2Þ which is smaller than the required linear convergence of h Eq. (3.16) for a third-order reconstruction. In this per-
spective the quadratic convergence is optimal, since one cannot expect more from a three-point stencil.

Considering the case of smooth extrema with one vanishing lateral derivative in the discrete FV setting, i.e., di�1=2 ¼ 0 and
diþ1=2 ¼ cOðDxsÞ. The asymptotic region g becomes
gð0; cOðDxsÞÞ ¼ c
r

� �2
OðDx2ðs�1ÞÞ: ð3:19Þ
For data with a local extremum s ¼ 2 and c ¼ u00ðxi�1=2Þ and g becomes
gð0;u00ðxi�1=2ÞOðDx2ÞÞ ¼ u00ðxi�1=2Þ
r

� �2

OðDx2Þ: ð3:20Þ
Consequently we are inside the asymptotic region, i.e., third-order reconstruction. For s ¼ 0, one of the lateral slopes is con-
stant yielding
gð0; cÞ ¼ c
r

� �2
OðDx�2Þ; ð3:21Þ
hence second-order convergence towards infinity. Thus switching to the limiter /̂ðhÞ already on a coarse grid in the presence
of a jump discontinuity. It is significantly faster than the convergence order of total variation for LDLR OðDx1:4j lnðDxÞjÞ [5]
andOð

ffiffiffiffiffiffi
Dx
p
Þ for Marquina’s hyperbolic reconstruction [18]. This is the reason why Marquina has still to preprocess the lateral

derivatives to avoid spurious oscillation in the presence of jump discontinuities.
Once again it is important to consider the constants in the convergence analysis. In this case especially the ration c

r. In the
presence of a local extremum at the cell interfaces the second derivative c ¼ u00ðxi�1=2Þ represents a measure for the steepness
of the data, i.e., for its curvature. The radius of the asymptotic region can account for large curvatures on coarse grids. This
eventually leads to a faster – in term of mesh resolution Dx – convergence of g towards zero, i.e., to third-order accurate
reconstruction. In the presence of discontinuities the constant jcj simply represents the jump between two neighboring cells.
For strong shocks jcjwill be large. With a small radius 0 < r � 1 the asymptotic region g converges faster towards infinity. It
is important to understand that playing with the parameter r, i.e., increasing or decreasing the size of the asymptotic domain
clearly affects the amount of introduced variation. Yet the function g only affects region with one vanishing lateral
derivative.
Asymptotic−Region

Transition−Region

C o n f i δ e n c e �(�x)

O(�x3

)
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Finally our new third-order limiter function reads:
/Oð3Þðdi�1=2; diþ1=2Þ ¼

2þh
3 if g 6 1� �;

/̂ðhÞ if g P 1þ �;
1
2 1� g�1

�

� �
2þh

3 þ 1þ g�1
�

� �
/̂ðhÞ

� �
else

8>><>>: ð3:22Þ
with � being a small positive number, which is about the size of the particular machine precision and ensures Lipschitz con-
tinuity for /Oð3Þ. Note that in the proposed limiter, the problem of accurately recovering smooth extrema with one vanishing
lateral derivative and simultaneously reconstructing sharp gradients is rigorously decoupled. Consequently, in the presence
of a discontinuity the new limiter yields /Oð3Þ ! /̂ð0Þ ¼ 0 with OðDx2Þ Eq. (3.21). This convergence rate towards zero total
variation is significantly higher than that of Artebrant and Schroll’s double logarithmic reconstruction or Marquina’s hyper-
bolic reconstruction.

Fig. 4 points out the characteristic properties of the final limiter Eq. (3.22). It is, for simplicity, more a sketch rather than
an actual plot of the function /Oð3Þ. This way we can geometrically clarify the asymptotic region g, a confidence region and a
transition domain. In the first two regions the interface values are reconstructed to full third order, since we are ‘‘confident”
that the input data are smooth, i.e., s ¼ 2 Eq. (3.20). Whereas in the transition region the discretized input data are discon-
tinuous. In other words s ¼ 0 Eq. (3.21) and consequently the data have to be fully limited. The lower limit (1� �) and upper
limit (1þ �), i.e. the thickness of the dark circle around the asymptotic region ensure Lipschitz continuity of /Oð3Þ and so for
the numerical flux function F in Eq. (2.2) away from the asymptotic domain cuts along constant di�1=2 correspond to the lim-
iter function, Fig. 2.

We want to emphasize that in this formulation the asymptotic region only affects smooth functions with one vanishing
lateral derivative and is completely decoupled from the shock capturing limiter /̂ðhÞ. Once g > 1þ � the function /̂ðhÞ is
switched on. This limiter, as discussed before, satisfies at least for h > 0 Harten’s TVD constraints, thus not producing vari-
ation at all. Note that numerical experiments indicate, that the region for h < 0 is very seldom evaluated, namely when the
smooth extremum is precisely located at the cell center. Most of the time the cells for which h 
 �1 holds are affected. From
the reconstruction point of view, this means that these cells have to be identified as fast as possible, when refining cell size
Dx. Therefore the choice of the radius r is crucial. This variable, at least on a coarse grid, controls the compressivness of g Eqs.
(3.20) and (3.20), respectively. This is critical since discretized shallow gradient or smooth extrema eventually have identical
curvature for a certain grid size Dx. Because of this we recommend, especially for intermediate jump discontinuities on
coarse grids, to set r 2 ½0:001;1�. We prefer to produce as small variation as possible. Numerical experiments, however, indi-
cate that r > 1 is possible and in certain examples significantly improves the accuracy (see Fig. 17). Eventually the asymptotic
region always converges quadratically to the correct limit faster than LDLR. This compromise is the ultimate, independent of
the reconstruction Ansatz function, for a local three-point stencil.

4. Time integration

Since numerical errors in time and space discretization can be swapped, we need to adjust the time-marching scheme.
Third-order accuracy in time is accomplished by integrating the finite volume update Eq. (2.2) using the explicit third-order
TVD Runge–Kutta method of Gottlieb and Shu [7].

This specific Runge–Kutta scheme consists of a single Euler’s step repeated thrice
unþ1 ¼ un þ DtLun ¼ MðDtLÞun: ð4:1Þ

This is a system of explicit linear equations with the matrix operator L containing the non-linear spatial approximation for
the discrete set of values unþ1 � funþ1

i ;n ¼ . . . 0;1;2; . . .g, i.e., Lun ¼ LiðunÞ.
For the explicit Euler time-marching scheme the operator M reads
MðDtLÞ ¼ I þ DtL; ð4:2Þ

and for the explicit thee-stage Runge–Kutta method
MðDtLÞ ¼ I þ DtLþ 1
2
ðDtLÞ2 þ 1

6
ðDtLÞ3: ð4:3Þ
Note M is a polynomial in the spatial operator DtL.
To investigate the linear stability of the algorithm we assume L to be linear. We consider the time evolution of a sinusoi-

dal grid function in an unbounded domain, with a > 0 governed by the scalar linear advection equation
ut þ aux ¼ 0; ukðx; 0Þ ¼ vkð0Þeikx; x 2 ð�1;1Þ; ð4:4Þ
where vkðtÞ is the Fourier transform of the exact solution, k ¼ 2p=k is the wave number and i represents the imaginary unit.
Discretizing Eq. (4.4) on a grid with uniform spacing Dx we can calculate the complex amplitude, i.e the amplification factor
of a numerical scheme
vnþ1
k

vn
k

¼MðDtbLðkÞÞ � zðkÞ; ð4:5Þ



where bLðkÞ ¼ kk are the eigenvalues of the spatial operator L. This amplification factor is an approximation of the amplifica-
tion factor of the exact advection equation (4.4):
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zexðkÞ ¼ ukðx;DtÞ
ukðx;0Þ

¼ e�imkDx; ð4:6Þ
with the CFL number
m ¼ aDt
Dx

: ð4:7Þ
Numerical stability, in the von Neumann sense, implies that the absolute value of the amplification factor zðkÞ should not
exceed unity. Hence the characteristic equation for the explicit third-order Runge–Kutta method reads
jzðkÞj ¼ j1þ DtkðkÞ þ 1
2
ðDtkðkÞÞ2 þ 1

6
ðDtkðkÞÞ3j 6 1: ð4:8Þ
Applying the quadratic reconstruction Eq. (3.1) to the advection equation, we yield the semi-discretization
d
dt

ui ¼ �a
3ui þ ui�2 � 6ui�1 þ 2uiþ1

6Dx

� �
; ð4:9Þ
which corresponds to the complex spectrum
Dtkk ¼ �
1
6
me�ikDxðeikDx � 1Þð5þ cosðkDxÞ þ 3i sinðkDxÞÞ: ð4:10Þ
Inserting Eq. (4.10) into the characteristic equation of the explicit third-order Runge–Kutta method Eq. (4.8) yields the
amplification factor of the Fourier mode. To obtain the amplification factor for the above scheme Eq. (4.9) with a second-or-
der time-marching method, we have to drop OððDtkðkÞÞ3Þ in Eq. (4.8).

Fig. 5 shows the absolute value of the amplification factor plotted against the reduced wave number ~k ¼ kDx for different
CFL numbers m. The left figure represents an explicit second-order time integration and the right one represents the three-
stage Runge–Kutta time-marching scheme for Eq. (4.4). Both plots indicate that the scheme Eq. (4.9) is less dissipative for
very small Courant numbers jmj 6 0:1. However using the third-order time integration, the dissipation of high frequency
waves gets reduced with large Courant numbers jmjP 1:0. Furthermore the third-order time-marching scheme, in contrast
to the second-order one, gets unstable for high-frequency waves, but remains stable for small frequencies. The Fourier
modes in the solution have in general the largest amplitude at low wave numbers.

From the numerical evaluation of the wave spectrum, we conclude that the explicit three-stage TVD Runge–Kutta method
is stable for all values of the Courant number jmjK 1:63. Note that using only a second-order time-marching scheme plus the
third-order spatial reconstruction we would obtain a more restrictive CFL condition jmjK 0:83.

Using a classical truncation error analysis in the frequency domain, we can recover the formal order of accuracy of the
scheme. We consider the ratio of the numerical amplification factor and the exact one:
Rð~kÞ ¼ zð~kÞnu

zð~kÞex
: ð4:11Þ
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With a standard Taylor expansion we get for the third-order method Eq. (4.9) combined with a three-stage TVD Runge–Kutta
time integrator
Fig. 6.
t ¼ 2 (l
Rð~kÞOð3Þ � 1 ¼ � 1
24

mð2þ m3Þ~k4 þOð~k5Þ: ð4:12Þ
The ratio of the amplification factors for the third-order scheme Rð~kÞOð3Þ approximates 1 to fourth-order Oð~k4Þ. The leading
term is a real number which is associated with a diffusive character of the method. Comparing this quantity with only a TVD
second-order time-marching scheme and the quadratic reconstruction Eq. (4.9) we obtain
Rð~kÞOð2Þ � 1 ¼ �1
6

im3 ~k3 � 1
24

mð2� 3m3Þ ~k4 þOð~k5Þ: ð4:13Þ
This scheme is formally only of second-order accuracy Oð~k3Þ with a dispersive character.
In Fig. 6 we compare numerical results for the linear advection equation (4.9). Two different time integration schemes,

namely the second-order Heun and the three-stage Runge–Kutta method, are used. The unlimited third-order algorithm pro-
duces only small, yet symmetric and local, over-and under-shoots. The oscillation decay in time, since diffusion is dominant.
In contrast, the second-order scheme with third-order spatial accuracy is dispersive and the oscillations disperse as time pro-
ceeds and completely destroy the shape of the initial profile.

We are aware that the von Neumann analysis gives only a sufficient condition for stability for linear operators L. Our
reconstruction is based upon a non-linear limiter function. Its behavior in the frequency domain cannot be completely rep-
resented by a linear stability analysis. Yet the analysis indicates the benefits using a three-stage Runge–Kutta time integra-
tion together with third-order spatial reconstruction. We not only obtain a far less restrictive CFL condition than using a
second-order time-marching scheme, we also improve its dissipative character especially for high frequency waves and
its shape preserving properties. Moreover due to the local character of the oscillations, the non-linear limiter function will
only be limiting few cells around a discontinuity. Whereas in the second-order, dispersive, algorithm the limiter has to be
applied on all cells to stabilize the computation.

5. Numerical experiments

In this section we conduct a series of convergence and accuracy tests from one-dimensional linear advection equation to
two-dimensional Euler equations including also a pseudo convergence test for the one-dimensional ideal MHD equations.

5.1. One-dimensional scalar equations

We solve the scalar linear advection equation
ut ¼ �ux; uðt ¼ 0; xÞ ¼ u0ðxÞ; ð5:1Þ
with different initial conditions on a periodic domain x 2 ½�1;1�.

5.1.1. Convergence studies for a smooth initial profile

Example 1. We solve the advection equation (5.1) with the initial condition u0ðxÞ ¼ sinðpxÞ. The initial profile is advected
until t ¼ 1. We conduct numerical experiments for different radii r of the asymptotic region Eq. (3.17), to clarify its expansion
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for the accuracy of the proposed scheme. Rather than presenting a table with the convergence rates calculated between two
consecutive results, we have plotted in Fig. 7 the computed L1- and L1-errors obtained at t ¼ 1 with Courant number m ¼ 0:9.
The discrete norms are given by:
Fig. 8.
using 2
keð�; tnÞkL1
¼ Dx

XN

i¼1

j�uðxi; tnÞ � �un
i jkeð�; tnÞkL1 ¼ max

16i6N
j�uðxi; tnÞ � �un

i j: ð5:2Þ
Here N is the number of computational cells. In this way we get a clear impression when – in terms of spatial resolution and
radius r – the designated error, i.e., the error of the unlimited quadratic polynomial reconstruction is reached. We have to
keep in mind that no FV-reconstruction based on three cells can be more accurate than the pure quadratic polynomial recon-
struction. Calculating the convergence rate between two consecutive results gives in all three cases, r ¼ 1:0; r ¼ 0:1 and
r ¼ 0:01, the formal third-order using only 40 cells. However it is obvious that the designated accuracy is only reached with
more cells, especially for a small asymptotic region r 6 0:01. Note that the curvature of our initial function is ju00ðxÞj ¼ p2.
Whereas Artebrant and Schroll [5] use the initial function u0ðxÞ ¼ 1:0þ 0:2 sinðpxÞ with smaller curvature ju00j ¼ 0:2p2. Con-
sequently they recover third-order convergence rate setting the variational-control parameter q ¼ 1:4 (see Eqs. (3.6) and
(3.7)) with 40 grid cells. Using the same initial data we recover the desired convergence error for r ¼ 1:0 with only 10 cells,
hence faster. This is due to the fact that g ¼ OðDx2Þ for smooth extrema.

Fig. 8 shows two different solutions of the advection equation: one obtained with a step function and one with a sin wave
as initial function u0ðxÞ. The picture clearly points out the effect of the asymptotic region for different radii r. Choosing a
small radius r 6 0:01, the limiter needs a sufficient resolution, around 200 cells, to be able to distinguish between a
discretized smooth extremum or a shallow gradient. Note that the two profiles are advected ten times ðt ¼ 20Þ around the
domain x 2 ½�1;1�. We can also observe that even for a large asymptotic region, essentially no limiting, the method does not
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become unstable, unlike an unlimited second-order TVD method. The over- and under-shoots remain localized and do not
grow with time.

Example 2. To investigate the long-term evolution properties of several schemes we solve the advection equation (5.1) with
the initial condition u0ðxÞ ¼ sin4ðpxÞ. The convergence errors are calculated at t ¼ 10 with Courant number m ¼ 0:7. The key
issue of this test case is to examine the importance of adjusting the time-marching scheme to the formal order of accuracy.
We perform a numerical convergence analysis for the second-order Heun scheme and the third-order TVD Runge–Kutta time
integrator in combination with different spatial reconstructions. The tested schemes are:
Heun, MCD
Fig. 9. Double-logarithmic plots of the error vs. number of grid cells for the advect
different time-marching schemes combined with different spatial reconstruction.
Poly. 3rd (dashed line): unlimited third-order scheme. Left: 1-norm errors, right:
Heun OðDt2Þ with limiter /ðhÞ ¼max 0;min 2h; 1þh
2 ;2

� � 

Heun, LimO3
 Heun OðDt2Þ with limiter /̂ðhÞ Eq. (3.13)

RK3rd, Koren
 RK3rd OðDt3Þ with Koren limiter /TVDðhÞ Eq. (3.11)

RK3rd, LimO3, r = 0.1
 RK3rd OðDt3Þ with limiter /Oð3Þðdi�1=2; diþ1=2Þ Eq. (3.22)

RK3rd, Poly. 3rd
 RK3rd OðDt3Þ with quadratic reconstruction /ðhÞ ¼ 2þh

3

Heun, Poly. 2nd
 RK3rd OðDt3Þ with linear reconstruction /ðhÞ ¼ 1þh

2

The Heun time-marching scheme combined with a third-order spatial reconstruction is formally only of second-order accu-
racy exhibiting a dispersive character Eq. (4.13) and Fig. 6. This leads to a phase error when smooth solutions are approxi-
mated, especially for long-term evolution.

Fig. 9 shows the obtained convergence results with the different algorithms. The two unlimited spatial reconstructions
are plotted as reference solutions for a slope corresponding to a second-order (dashed line) and a third-order method (full
line), respectively. We have used a quite fine resolved grid since the initial function consists of two sharply peaked but
smooth extrema.

The worst results are obtained with the classical second-order TVD method (Heun,MCD). Yet the scheme exhibits almost
second-order convergence rate in the L1-norm with only slightly larger errors than its unlimited counterpart. Changing only
the spatial reconstruction to the limiter function /̂ðhÞ Eq. (3.9) improves the results. The errors in both norms decrease by an
order of about 2, but the convergence order remains identical.

An improvement of the accuracy is obtained with the third-order TVD Runge–Kutta time integrator combined with the
Koren limiter /TVDðhÞ Eq. (3.11) or combined with the limiter /̂ðhÞ Eq. (3.13). Although third-order accuracy cannot be
recovered completely – extrema clipping without asymptotic region – the convergence rates in the L1- and L1-norm are
about 2.5 and 1.7, respectively. For smooth data both, the Koren limiter /TVDðhÞ Eq. (3.11) and the limiter function /̂ðhÞ Eq.
(3.13) are of similar accuracy. Differences are not visible in a log–log-plot. Both limiter functions yield for smooth extrema
with one vanishing lateral derivative
/TVDð0Þ ¼ /̂ð0Þ ¼ 0 and
d/TVD

dh
ð0þÞ ¼ d/̂

dh
ð0þÞ ¼ 2: ð5:3Þ
Yet the limiter /̂ðhÞ Eq. (3.13) is slightly more accurate. It employs the quadratics reconstruction Eq. (3.8) for h 2
	
�2;� 4

5



and yields
ion equation with u0ðxÞ ¼ sin4ðpxÞ at t ¼ 10 with m ¼ 0:7. Comparison of
Heun, Poly. 2nd (dashed line): unlimited second-order scheme. RK3rd,
max-norm errors.
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d/̂
dh
ð0�Þ ¼ �1

2
: ð5:4Þ
Hence the limiter /̂ðhÞ Eq. (3.13) uses also information for the reconstruction from the neighboring cells for �2 6 h < 0.
Switching on the asymptotic region, hence using limiter /Oð3Þ Eq. (3.22) with radius r ¼ 0:1 improves the convergence

results significantly. The initial profile exhibits large curvatures ju00j 
 39:5 at the vicinity of the two extrema. Therefore the
full accuracy of the unlimited quadratic reconstruction in the max-norm is recovered not until about 1000 grid-cells
resolution. Yet the use of the asymptotic region already improves the accuracy with less computational cells in both norms.
Note that no accuracy degeneracy, as reported in [23] for third-order ENO schemes, was found with the proposed algorithm
(RK3rd, LimO3, r = 0.1 with asymptotic region).

We can clearly observe that the unlimited second-order scheme (dashed line) needs about 6000 grid cells to achieve the
same accuracy as the RK3rd, Koren-limiter method (or RK3rd LimO3, respectively), which cuts of smooth extrema.
Consequently for this example modified second-order algorithms as proposed by Venkatakrishnan [33] or van Albada [30]
will also need at least 6000 computational cells and introduce slight oscillations [33]. We did not observe any spurious
oscillations, neither with RK3rd /TVDðhÞ Eq. (3.11) nor with RK3rd /̂ðhÞ Eq. (3.13).

Although the computational effort increases with the number of stages in the time integrator, it is difficult to achieve the
accuracy of the third-order schemes (RK3rd, LimO3, r = 0.1 with asymptotic region) with second-order methods (see Fig. 9).
The analysis of Section 4 suggests that we can use larger time steps with the new algorithm. This increases the
computational efficiency, even in comparison to second-order methods, without loss of accuracy.
5.1.2. Initial condition with discontinuities
We take a test case, proposed in [12]. It consists of a tight combination of four waves, namely a smooth but narrow Gauss-

ian peak, a square wave, a triangle wave and a half ellipse. The triangle has a smooth transition at its base. We use periodic
boundary conditions on the domain x 2 ½�1;1� and the initial profile is advected until t ¼ 20.

In Fig. 10 we compare our new limiter function /Oð3Þ (LimO3) with third-order ENO method (ENO3) and with Artebrant
and Schroll’s LDLR. ENO3 is essentially not local since it uses a five-point stencil to choose between the ‘‘smoothest” qua-
dratic reconstruction for the interface values. All schemes use the same explicit third-order Runge–Kutta method for time
integration. Since our method has a less restrictive CFL condition, we run the experiment with m ¼ 0:8, instead of m ¼ 0:6
for ENO3 and LDLR.

Especially in contrast to the classical TVD-MUSCL scheme (see e.g. [32]), the new method gives a good approximation of
the exact profile. Typical drawbacks of second-order TVD limiter, such as smearing and squaring of linear waves are com-
pletely avoided. The results are perfectly symmetric and corners a very well resolved. The symmetry of the results is due to
the fact, that near h ¼ 1 we recover a smooth function of second degree and the formal third-order accuracy. Whereas sec-
ond-order TVD limiters, such as super-bee or minmod, are only Lipschitz continuous near h ¼ 1. This drawback enhances
the probability, that the wrong choice of slopes is used for the one-sided approximation. However even smooth limiters,
such as van Leer, MCD (see e.g. [15]) or van Albada [30] do not give symmetric profiles (see e.g. [32]). Furthermore we
can observe that results obtained with the third-order limiter /̂ðhÞ Eq. (3.9) using only a second-order time-marching
scheme loose their symmetry completely (see Fig. 10, bottom profile). As already indicated in Section 4 and in the previous
convergence studies, the formal order of the complete algorithm is essential not only for its accuracy, but also for its shape-
preserving quality.

Both LimO3 and LDLR are essentially of the same quality, yet LimO3 has a higher Gaussian peak and produces less over-
shoots for the half ellipse. Whereas ENO3 is not able to distinguish between the different waves and always produces sinu-
soidal-like wave patterns. All three methods produce negative values, yet for LimO3 they are of a smaller magnitude.
Remember the asymptotic region scales, in the presence of jump discontinuities, with OðDx�2Þ Eq. (3.21).

In the bottom profile of Fig. 10 we can also observe the relevancy of the shape of the limiter for h < 0. We have used the
limiter
/̂ðhÞ ¼max �1;min
2þ h

3
;max �2h;min 2h;

2þ h
3

;2
� �� �� �� �

ð5:5Þ
and compared it to /TVDðhÞ Eq. (3.11). It is obvious that in this form the limiter violates the monotonicity region of [25] or [6],
yet we still could not observe any over-or under-shoots. But in comparison to /TVDðhÞ the amplitude of all four waves is bet-
ter resolved. It is necessary to use Heun time integrator in order to emphasize these effects. The limiter /̂ðhÞ Eq. (5.5) recon-
structs cells for which h 2 �5;� 2

7

	 

hold to full third-order accuracy. This results in a more accurate approximation of the

wave peaks. Note that we have significantly stretched the region of third-order reconstruction for h < 0 in order to clearly
demonstrate its effects. For further calculations we remain in the monotonicity region proposed by Spekreijse [25], and use
the proposed limiter function in Section 3 Eq. (3.13).

A comparison of the Koren limiter Eq. (3.11) with LimO3 ðr ¼ 0:01Þ Eq. (3.22) employing RK3rd time integrator shows
eventually no significant difference on the used grids. We have to either significantly refine the grid to see eventually a better
resolved smooth half ellipse for 0:4 6 x 6 0:6 or enlarge the asymptotic region, yet introducing more local variation. The ef-
fects are depicted in detail in Fig. 8.



5.1.3. Non-linear scalar equations
It is our aim to examine the total variation for non-linear scalar equations. First we solve Burger’s equation
ut ¼ �
u2

2

� �
x

; u0ðxÞ ¼ 1þ 1
2

sinðpðx� 1ÞÞ ð5:6Þ
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on a periodic domain x 2 ½�1;1� under CFL condition m ¼ 0:9.
Second we calculate the non-convex Buckley–Leverett equation
ut ¼ �
u2

u2 þ að1� uÞ2

 !
x

; u0ðxÞ ¼
1 if � 1

2 6 x 6 0;
0 elsewhere

(
ð5:7Þ
on the same spatial domain and with the Courant number m ¼ 0:7. The constant a is set to 1
4 and the initial profiles are taken

from [5]. For the Buckley–Leverett equation we use the local Lax–Friedrichs flux
F iþ1
2
ðûð�Þ; ûðþÞÞ ¼ 1

2
f ðûð�ÞÞ þ f ðûðþÞÞ � aiþ1=2ðûðþÞ � ûð�ÞÞ
� 

; ð5:8Þ
with the wave propagation speed aiþ1=2 ¼max @f ðuÞ
@u

��� ���� �
.

We calculate for both equations the total variation for a grid function �u
TVð�unÞ �
XN

i¼1

j�un
iþ1 � �un

i j ð5:9Þ
of the discrete solution.
Fig. 11(left) shows the numerical behavior of the total variation for Burger’s equation and the LimO3 approximation at

t ¼ 2:0. We observe that the calculated total variation is bounded by TVð�u0Þ and gradually decreases with time as a jump
discontinuity forms at t 
 1:0. In contrast to LDLR, the accuracy of the solution with 40 cells is significantly better (see
[5]) and the evolving smooth profile for t 2 ½0;0:8� is recovered accurately. Note that for all three resolutions the value of
total variation before the shock forms is always larger than that of LDLR. Hence the smooth profile is resolved more accu-
rately with few computational cells. This could even be improved with a larger asymptotic region, yet also leading to larger,
but bounded spurious oscillations shortly before the jump discontinuity forms. However once the discontinuity clearly ap-
pears the limiter yields /Oð3Þ ! /̂ð0Þ ¼ 0 and the oscillations completely disappear.

In the case of the Buckley–Leverett equation we analyze a very similar total-variation behavior (see Fig. 12). Although we
introduce some spurious variation, which eventually diminishes as the mesh is refined. The slight overshoots at x ¼ 0:62 in
the compound wave are similar to the LDLR results (see [5] for details) and are not connected to the asymptotic region. Due
to the compressible character of high-order schemes, the shock speed is approximated slower than the characteristic speed
at some cells between the rarefaction and the shock. Adding diffusion, i.e., simply decreasing the parameter b in /̂ Eq. (3.9)
damps out the spurious overshoot in the vicinity of the shock.

5.2. One-dimensional systems

The order of the scheme is based upon the reconstruction of the interface values and not upon the numerical flux func-
tion. Hence the proposed scheme is not tied to any particular flux function. Since our reconstruction is very efficient, we can
choose a more costly – in terms of floating point operations – flux function. We formulate the numerical flux in terms of all
the eigenvalues kp, eigenvectors rp and characteristic variables ap of the Roe-averaged matrix [15]:
F iþ1
2
ðûð�Þ; ûðþÞÞ ¼ f ðûð�ÞÞ þ

X
p

apjkpjrp: ð5:10Þ
All calculation are performed with the limiter function applied on conservative variables in order to keep the new method as
simple and efficient as the TVD-MUSCL scheme.
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5.2.1. Gas dynamics: 1D Euler equations
We consider an inviscid, compressible and non-heat conducting gas modeled by the Euler equations:
Fig. 13.
m ¼ 0:8
@t

q
qv
E

0B@
1CAþ @x

qv
qv2 þ p

vðEþ pÞ

0B@
1CA ¼ 0; ð5:11Þ
where q is the density, p is the pressure and v is the velocity, respectively. We assume a polytropic gas with the total energy
E ¼ 1
2
qv2 þ 1

c� 1
p; ð5:12Þ
where c, the adiabatic exponent, i.e., the ratio of specific heat, is set to be 1.4 for diatomic gases. We compute initial value
problems by means of an initial profile of the primitive variables q;v , and p defined through the domain.

5.2.2. Non-linear traveling plane waves
In order to calculate the empirical order of convergence (EOC) for non-linear systems, we have chosen a non-linearly cou-

pled test problem, which develops a shock profile. We consider a convergence test on periodic boundaries x 2 ½0;1� with ini-
tial conditions
q
v
p

0B@
1CA

0

¼

1þ 1
2 ðc� 1Þ v0

c0

� �j

1=4 sinðpxÞ

1þ 1
2 ðc� 1Þ v0

c0

� �cj

0BBB@
1CCCA; c0 ¼

ffiffiffi
c
p

; j ¼ 2
c� 1

: ð5:13Þ
EOC density profile of a non-linear plane wave for the Euler equations at t ¼ 0:8 with m ¼ 0:8 and r ¼ 0:01. Koren limiter /TVDðhÞ Eq. (3.11) with
.



The initially smooth flow will eventually steepen and form a shock wave at tI ¼ 8
pðcþ1Þ 
 1:06 [14]. This way the EOC reflects

the accuracy of the whole scheme, including a linearized approximated Riemann solver.
In Fig. 13 we have plotted the calculated errors in the density component at t ¼ 0:8. We compare the proposed algorithm

RK3rd, LimO3 /Oð3Þðdi�1=2; diþ1=2Þ Eq. (3.22) with RK3rd, Koren limiter /TVDðhÞ Eq. (3.11). A reference solution is obtained with
the third-order unlimited polynomial reconstruction Eq. (3.1) using 40,960 cells. Due to the rather flat initial density profile
we get almost optimal accuracy with already 40 computational cells having r ¼ 0:01. Similar to the previous convergence
experiment (see Fig. 9) both schemes exhibit nearly identical accuracy on coarse grids. Once the resolution is sufficient re-
fined the asymptotic region is switched on and /Oð3Þðdi�1=2; diþ1=2Þ Eq. (3.22) recovers full third-order accuracy. Yet the Koren
limiter always smears out smooth structures.

5.2.3. Riemann problem: shock–blast interaction
In this rather challenging problem, suggested as benchmark in [35], two blast waves collide and generate multiple strong

shocks and rarefactions in the computational domain x 2 ½0;1�. Classical second-order TVD limiters, such as super-bee are
either too compressive and produce negative density or they are too diffusive and smear out the contact waves and local
extrema. The initial data for the simulation consist of three constant states:
ðq;v ;pÞ0 ¼
ð1;0;103Þ; 0 6 x < 0:1;

ð1;0;10�2Þ; 0:1 6 x < 0:9;

ð1;0;102Þ; 0:9 6 x 6 0:1:

8><>: ð5:14Þ
Reflecting boundary conditions are applied at both ends of the domain and the solution is evolved until t ¼ 0:038 with
r ¼ 1:0. Figs. 14 and 15 compare the density, total energy and pressure profiles computed on a 800 cell grid with reference
and LDLR data from Artebrant and Schroll [5].
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The results obtained with the new scheme LimO3 with Courant number m ¼ 1:5 approximates the solution more accu-
rately than LDLR. In both the density and the energy distribution we can clearly observe a better resolution of the local ex-
trema in the middle of the domain. The shock is resolved sharply within only two cells without any spurious oscillations and
with the correct velocity. The left contact discontinuity is also very accurately approximated.

The Koren limiter failed on this experiment. The calculation eventually broke down, producing unphysical densities when
the two reflected shocks collided together in the middle of the domain. We suspect that the Koren limiter is too compressive
for this experiment. Similar observations have been made with the second-order accurate, but compressive super-bee
limiter.

5.2.4. Riemann problem: shock–acoustic-wave interaction
This test case was proposed in [24]. It simulates an interaction of a supersonic shock wave with a sinusoidal density dis-

turbance involving smooth structures and a sharp shock. A Mach 3 shock wave moves into a smooth acoustic wave, which
gets amplified and has higher frequency right behind the shock. We solve the 1D Euler equation on the domain x 2 ½�5;5�
with constant extrapolating boundary conditions. The initial conditions are prescribed as
Fig. 16.

Fig. 17.
and r ¼
with va
ðq; v; pÞ0 ¼
ð3:857143;2:629369;10:333333Þ; x < �4;
ð1þ 0:2 sinð5xÞ;0;1Þ; x P �4:

�
ð5:15Þ
In Fig. 16 we show computational results for the density component obtained at t ¼ 1:8 using 400 FV-cells. We compare the
solution for the proposed algorithm LimO3 with LDLR results from Artebrant and Schroll [5] (Fig. 16, right) and with the Ko-
ren limiter (Fig. 16, left). Since the solution is dominated by smooth, but narrow structures we could expand the asymptotic
region Eq. (3.17) setting the radius r ¼ 1; r ¼ 5 and r ¼ 10. The effect is clearly visible. The local extrema in x 2 ½0:5;2� are
considerably better resolved increasing r and are perfectly symmetric. We have to note that we could also run this Riemann
problem without any limiting procedure, hence using the full parabolic spatial reconstruction, Fig. 17(left). Similar to the
Density distribution of Shu–Osher shock-acoustic test case for Euler equations. Comparison at t ¼ 1:8 of LimO3 (r ¼ 5) and LDLR using 400 cells.

Density distribution of Shu–Osher shock-acoustic test case for Euler equations at t ¼ 1:8. Left: Comparison of Koren limiter and LimO3 with r ¼ 1
10 using 400 grid cells. Right: Comparison of unlimited quadratic reconstruction Eq. (3.1) using 400 cells and second-order TVD-MUSCL scheme

n Leer’s limiter Eq. (5.16) with 800 cells.
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observation we have made for the linear advection equation (see Fig. 8) the unlimited third-order reconstruction remains
stable with minor over- and under-shoots in the vicinity of the shock, hence allowing us to choose a large asymptotic region.
This is in contrast to classical second-order method, which could not simulate this experiment without proper TVD limiters.
Yet even compressive TVD limiters, such as van Leer’s harmonic mean limiter [15]
L
−
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ro

r 
of
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en
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ty

 ρ
 

/vLðhÞ ¼ hþ jhj
1þ h

ð5:16Þ
needs around twice as many computational cells to resolve the smooth structure behind the shock, Fig. 17(right).
Note that if we set r 6 1 we obtain qualitatively similar results to LDLR and the Koren limiter. However in contrast to

LDLR we produce no under-shoots in the region with steep gradients x 2 ½�2;0�. This is identical to the Koren limiter, which
always limits steep gradients to first-order. It is an advantage of our reconstruction, that we do not change the TVD property
of the limiter /Oð3Þðdi�1=2; diþ1=2Þ Eq. (3.22) once a discontinuity is detected, i.e., the function /̂ðhÞ is switched on. Enlarging the
asymptotic region allows, already on a coarse mesh, the consideration of data with large curvature as smooth structures. This
is different in the LDLR scheme. There the total variation-control parameter q has to be decreased. This eventually leads to an
improved resolution of the smooth profile in x 2 ½0:4;2:4�, but also to a more variation in the vicinity of discontinuities, be-
cause variation is introduced everywhere.

5.3. Magnetohydrodynamics (MHD)

We extend our 1D system to the ideal MHD equations, which model the dynamics of plasma. Plasma dynamics are influ-
enced by magnetic fields induced through the Lorentz-force. Therefore an additional evolution equation for the magnetic
field B has to be derived. Further terms in the Euler system Eq. (5.11) which quantify magnetic force and energy density
are also needed. The adiabatic constant is c ¼ 5=3. The whole MHD system including the approximated Riemann solver
can be found in, e.g. [28,29] (and references therein).

The intention of this section is twofold. First we consider a convergence test to prove the formal order of our scheme for a
non-linear rather complicated system. Second we compare the non-uniform converge for one-dimensional MHD Riemann
problems for different schemes.

5.3.1. Empirical order of convergence (EOC)
We solve the MHD equations on the domain x 2 ½�1;1� with smooth initial data [4],

q ¼ 1:5þ 0:5 sinðpxÞ;vx ¼ 1:5þ 0:25 cosðpxÞ;vy ¼ 1:5þ 0:25 sinðpxÞ;Bx ¼ 0:5;By ¼ 1:0 and p ¼ 0:25. The errors are calcu-
lated for t ¼ 0:628 using a reference solution obtained on a very fine grid with the pure quadratic reconstruction Eq.
(3.1). We compare the convergence rate of both LimO3 and LDLR methods to envisage the particular difference of the radius
r in the proposed asymptotic domain and the variation-control parameter q of LDLR.

Fig. 18 shows the calculated empirical convergence error for the density distribution of the LimO3 scheme for various
radii of the asymptotic region. In Fig. 19 we envisage the empirical convergence error of LDLR. LDLR has been implemented
as described in [5]. Both methods need around 200 FV-cells to reach the desired convergence error since the smooth extrema
in the density profile are rather narrow. However LimO3 converges always faster, i.e., using less grid cells, than LDLR. In addi-
tion for r ¼ 1:0 and r ¼ 0:5 the convergence error is clearly smaller than for LDLR with q ¼ 1:0. Remember for q! 0, LDLR
recovers the pure quadratic polynomial. Though the most important difference is that even for a small radius of the asymp-
totic region we clearly see the correct convergence error. Whereas LDLR with the variation-control-exponent q ¼ 1:0 needs
more than 5000 FV-cells to converge to the error of pure quadratic reconstruction. In other words with changing the radius
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Fig. 18. EOC of LimO3 for the 1D MHD system at t ¼ 0:628 with m ¼ 0:8 and different asymptotic regions.
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of the asymptotic region we just change the ability of the new limiter /Oð3Þðdi�1=2; diþ1=2Þ, to distinguish between local smooth
extrema and discrete gradients with one vanishing lateral derivative. But once a discontinuity is recognized the limiter /̂ðhÞ
diminishes total variation. Changing the variation-control parameter q in LDLR affects the whole reconstruction procedure. A
small q increases the total variation (decreases the diffusion), yet the reconstruction cannot accurately recover smooth ex-
trema with one vanishing lateral derivative. For q > 1:4 the total variation is significantly decreased, yet diffusion is also in-
creased, but the LDLR algorithm can resolve smooth extrema with one vanishing lateral derivative more accurately. This is a
significant difference of both schemes. Our aim is primarily to retain the very good shock capturing properties of the /̂ðhÞ
limiter and yet to be able to accurately resolve smooth structures with one vanishing lateral derivative.

5.3.2. Pseudo convergence
We consider an almost coplanar Riemann problem, as proposed in [28], to investigate the convergence properties towards

the true solution. It has been described in detail for several second-order methods in [28] and for very high, up to a ninth-
order method, in [29] that all schemes converge initially to a wrong solution. Only with a very fine spatial resolution the
methods start to converge to the right solution. As such, the Riemann problem is a hard test case for FV methods. The
aim is to recover the correct convergence on a coarse computational grid.

We investigate the error of the numerical solution obtained by the proposed method LimO3 and compare it to three dif-
ferent methods: A second-order method (Roe2) with m ¼ 0:9 (see [28]), a fifth-order WENO (WENO5) scheme with m ¼ 0:4
(see [29] and references therein), and the LDLR method with m ¼ 0:9. Roe2, LimO3 and LDLR are conducted with the same
approximated Riemann solver and the higher-order methods, LimO3, LDLR and WENO5 use the same explicit three-stage
Runge–Kutta time-marching scheme. The second-order TVD Heun time-marching scheme is implemented in Roe2.

The left picture in Fig. 20 shows the convergence results of the magnetic field By for an almost coplanar Riemann problem
consisting only of regular waves (r-solution), i.e., shock and discontinuities. The solution for the Riemann problem consisting
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Fig. 20. Almost coplanar MHD Riemann problem. L1-errors of the magnetic field By for the twist angle a ¼ 3:0 with respect to the c-solution (left) and r-
solution (right). Lim03 has m ¼ 1:5 and r ¼ 0:5.
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of any non-regular waves, c-solutions for compound waves, is shown in the right picture of Fig. 20. LimO3, LDLR and WENO5
exhibit eventually the same results. All three methods start to converge with the same accuracy from 1000 cells upwards to
the true solution. As already concluded in [29] very high order, such as WENO5, does not significantly improve the pseudo
convergence although they display smaller numerical viscosity than second-order TVD methods (Roe2). Note that LimO3
qualitatively computes the same numerical solution as WENO5, yet using a nearly four times higher Courant number
m ¼ 1:5 and only three data points for spatial reconstruction. Changing the radius of the asymptotic region did not improve
the pseudo convergence.

5.4. Euler system in two dimensions

We compute 2D experiments using a dimension by dimension reconstruction approach
d
dt

�uij ¼ Lið�ujÞ þ Ljð�uiÞ ¼
1
Dx
F i�1

2;j
� F iþ1

2;j

� �
þ 1

Dy
Gi;j�1

2
� Gi;jþ1

2
Þ

� �
: ð5:17Þ
We recover the intermediate values ûð�Þ
i�1

2;j
and ûð�Þ

i;j�1
2

with the proposed third-order reconstruction applied on the conserved

variables using the HLLE approximated Riemann solver [27]. Since the flux evaluation is done in both directions in every sin-
gle Euler stage of the third-order Runge–Kutta method, the stability criterion yields:
−0.1 0 0.3 1.6
−0.5

0

0.5

reflecting

ρ =1
p =1
u =0
v=0

ρ = 0.1
p = 1
u = 0
v =0

r = 0.2

ρ = 3.81
p = 10
u = 2.85
v =0

inflow outflow

reflecting

Fig. 21. Shock-bubble experimental setup for 2D Euler equation.

Fig. 22. Emulated Schlieren picture of shock-bubble simulation with 1700 � 500 cells with m ¼ 1:5. Top: t ¼ 0:2. Bottom: t ¼ 0:4.
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m ¼ 0:5ðmx þ myÞ 6 1:6: ð5:18Þ
We compare the following three schemes:
TVD-MUSCL
. Zoom of the shock-bubble Schlieren image Fig. 22. Second-order

24. Zoom of the shock-bubble Schlieren image Fig. 22. Left: LimO
Heun OðDt2Þ with van Leer’s harmonic limiter /vLðhÞ Eq. (5.16)

RK3rd, LimO3, r = 1.0
 RK3rd OðDt3Þ with limiter /Oð3Þðdi�1=2; diþ1=2Þ Eq. (3.22)

RK3rd, Koren
 RK3rd OðDt3Þ with Koren limiter /TVDðhÞ Eq. (3.11)
5.4.1. Shock-bubble
In this experiment we simulate a strong rightwards moving shock wave over a low density gas bubble. The initial con-

dition and the experiment geometry are sketched in Fig. 21. As the problem is symmetric we compute the upper part
y P 0 only and specify reflecting boundary conditions at y ¼ 0 and inflow boundary condition at x ¼ �0:1.
TVD-MUSCL scheme with van Leer’s limiter Eq. (5.16) with m ¼ 0:9 at t ¼ 0:2.

3 (r ¼ 1:0) with m ¼ 1:5. Right: Koren limiter /TVDðhÞ Eq. (3.11) with m ¼ 1:5.
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The LimO3 and van Leer’s TVD-MUSCL approximations are computed on a uniform mesh consisting of 1700� 500 FV-
cells. LimO3 results are obtained using m ¼ 1:5 with r ¼ 1:0, whereas the TVD-MUSCL scheme has m ¼ 0:9.

Fig. 22 shows the numerical results of LimO3 at different times. The emulated Schlieren pictures display density gradients
on a grey scale. In Figs. 23 and 24 the results at t ¼ 0:4 are compared for all three methods, namely TVD-MUSCL, LimO3 and
Koren limiter. We observe more small scale vortexes in the approximation of LimO3. The contact discontinuities are resolved
more accurately with the third-order method LimO3, still remaining computationally as fast as the second-order TVD-MUS-
CL scheme. Although the accuracy of the solution is already improved with the Koren limiter (Fig. 24, right), considerably
more details are still captured with LimO3 (Fig. 24, left).

5.4.2. 2D Riemann problem: Euler-four-shocks
We have taken two 2D Riemann problems originally defined in [20]. Both problems are solved on a square domain

ðx; yÞ 2 ½0;1� � ½0;1�, with initial constant states in four quadrants. The first Riemann problem features four shock waves with
the contact point localized at (3/4, 3/4) as proposed by [21]:
Fig. 25. Density contour plot of Euler-four-shocks problem using 1000� 1000 cells at time 0.8. Second-order TVD-MUSCL scheme with van Leer’s limiter
Eq. (5.16) and m ¼ 0:8.

Fig. 26. Density contour plot of Euler-four-shocks problem using 1000 � 1000 cells at time 0:8. Left: LimO3 with m ¼ 1:5 and r ¼ 1:0. Right: Koren limiter
/TVDðhÞ Eq. (3.11) with m ¼ 1:5.



Fig. 27.
Eq. (5.1

Fig. 28.
/TVDðhÞ
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ðq; u;v ;pÞ0 ¼

ð1:5;0;0;1:5Þ; ½0:75;1� � ½0:75;1�;
ð0:5323;1:206; 0;0:3Þ; ½0;0:75Þ � ½0:75;1�;
ð0:138;1:206;1:206;0:029Þ; ½0;0:75Þ � ½0;0:75Þ;
ð0:5323;0;1:206;0:029Þ; ½0:75;1� � ½0;0:75Þ:

8>>><>>>: ð5:19Þ
We compare in Figs. 25 and 26 density contour profiles of all three schemes. The numerical solution is obtained at t ¼ 0:8
with a Courant number of m ¼ 1:5 for LimO3 and Koren limiter and m ¼ 0:8 for van Leer’s TVD-MUSCL scheme on a uniform
grid with 1000� 1000 cells. All boundaries are artificial boundaries, i.e., constant extrapolated. Similar to the previous exper-
iment the amount and quality of details of the solution increases with the accuracy of the scheme. All three approximations
obtain the basic structure of the solution where the four shock waves interact. However LimO3 still resolves the contact dis-
continuity and the middle and top right plume with more details. The LimO3 and Koren limiter results are perfectly sym-
metric. For less accurate resolution the differences between all three methods where less profound. LimO3 needs
sufficient high resolution for small-scale structures, since the asymptotic region gðdi�1=2; diþ1=2Þ Eq. (3.17) is mesh size depen-
dent. On coarse grids the solutions obtained with LimO3 and Koren limiter are of similar quality. Note that the LimO3 sim-
Density contour plot of Euler-four-contacts problem using 1000 � 1000 cells at time 0:8. Second-order TVD-MUSCL scheme with van Leer’s limiter
6) and m ¼ 0:8.

Density contour plot of Euler-four-contacts problem using 1000 � 1000 cells at time 0:8. Left: LimO3 with m ¼ 1:5 and r ¼ 1:0. Right: Koren limiter
Eq. (3.11) with m ¼ 1:5.
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ulation is, because of Courant number m ¼ 1:5, as fast as the second-order accurate TVD simulation, yet essentially of third-
order accuracy in smooth regions. For comparison with different hight-order schemes see [16].

5.4.3. 2D Riemann problem: Euler-four-contacts
This Riemann problem consists of two shock waves generated at the origin of the domain (see Figs. 27 and 28). The struc-

ture of the solution has the quality of a vortex turning clockwise. The initial conditions are:
ðq;u;v ;pÞ0 ¼

ð1; 0:75;�0:5;1Þ; ½0:5;1� � ½0:5;1�;
ð2; 0:75; 0:5;1Þ; ½0;0:5Þ � ½0:5;1�;
ð1;�0:75; 0:5;1Þ; ½0;0:5Þ � ½0;0:5Þ;
ð3;�0:75;�0:5;1Þ; ½0:5;1� � ½0;0:5Þ:

8>>><>>>: ð5:20Þ
The generated shock waves propagate outwards following the slip lines, which are spiraled around the origin. We evolve the
initial data until t ¼ 0:8 on a uniform grid with 1000� 1000 cells. Similar to the previous experiments LimO3 (Fig. 28 – left)
exhibits the most detailed self-similar solution. Comparing Figs. 27 and 28, we can clearly observe a better resolved vortex at
the top and bottom. LimO3 resolves the contacts with more details. The second-order accurate MUSCL scheme is not sym-
metric. For comparison with different high-order methods see [22].

6. Conclusions

In this paper we have derived and analyzed a new third-order limiter for the numerical solution of hyperbolic conserva-
tion laws. In contrast to classical second-order TVD limiters, the proposed limiter function maintains its formal accuracy at
local extrema. Yet remaining still a simple, efficient piecewise-linear ðmax;minÞ function. It acts as a logical switch depend-
ing on the left and right slope and avoids complicated and costly reconstruction techniques. The new limiter uses a local
piecewise-parabolic reconstruction for smooth data and preserves accuracy within the asymptotic region. Similarities to lim-
iter functions obeying Harten’s TVD conditions have been analyzed. The new algorithm uses, in contrast to second-order
methods, an explicit third-order Runge–Kutta time-marching scheme. Clear advantages in the frequency domain and less
restrictive conditions for numerical stability for this time-marching method could be shown.

Various numerical experiments indicate the superiority of the proposed limiter over classical second-order TVD limiters.
The new scheme also compares favorably with third-order methods such as LDLR, ENO3 and the Koren limiter. It has very
good shape-preserving properties and known limiter effects, such as smearing and squaring do not appear. Numerical sim-
ulations with Courant numbers up to m ¼ 1:6 make the proposed method just as efficient as classical second-order TVD-MUS-
CL schemes, yet significantly improving the result. Note that TVD methods are computationally more economical than ENO
schemes [24]. Costly optimal stencil searches and memory storage are avoided.
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Appendix A. Derivation of the logarithmic limiter

In order to derive the logarithmic limiter Eq. (3.6) we have to formulate the cell interface values of LDLR as function of the
smoothness measurement h Eq. (2.8). The mesh size independent cell interface values of the LDLR are given by:
ûð�Þi�1=2 ¼ �ui þ cgð�ÞðaÞ þ dgð�ÞðbÞ; ðA:1Þ
where a; b; c and d are explicit function of the left and right slopes [5]:
aðdi�1=2; diþ1=2Þ ¼ 1� 2
jdi�1=2jqjdiþ1=2jq

jdi�1=2j2q þ jdiþ1=2j2q ¼ 1� 2
jhjq

1þ jhj2q ; diþ1=2 – 0 ðA:2Þ
We define a function depending solely on the slope ratio h (see Eq. (3.7))
p ¼ pðhÞ � 1� a: ðA:3Þ
The functions b; c and d are algebraic expressions of aðdi�1=2; diþ1=2Þ and the left and right slopes. The logarithm functions
come into the reconstruction via the functions [5]:
gðþÞðzÞ ¼ � lnð1� zÞ þ z
z2 ;

gð�ÞðzÞ ¼ ðz� 1Þ lnð1� zÞ � z
z2 :

ðA:4Þ
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We can reformulate all these functions in terms of h and pðhÞ:
b ¼ a
a� 1

¼ p� 1
p

; ðA:5Þ

c ¼ ða� 1Þðdiþ1=2ð1� bÞ � di�1=2Þ
b� a

¼ p� hp2

1� p2 diþ1=2; ðA:6Þ

d ¼ di�1=2 � c ¼ h� p� p2h
1� p2

� �
diþ1=2; ðA:7Þ

gðaÞðþÞ ¼ � lnðpÞ þ 1� p

ð1� pÞ2
; ðA:8Þ

gðaÞð�Þ ¼ ð�pÞ lnðpÞ � 1þ p

ð1� pÞ2
: ðA:9Þ
To recover Eq. (3.5) with a single logarithmic limiter function Eq. (3.6), we have to plug in the above equations into Eq. (A.1)
and extract once the right ðdiþ1=2Þ and the left ðdi�1=2Þ slopes.
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